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Self-assembly of ABC star triblock copolymers confined in cylindrical nanopores is studied using real-space
self-consistent mean-field theory. Specifically, the investigation focuses on the confined self-assembly of a
triblock copolymer which forms hierarchical lamellae in the bulk. Generically, the hierarchical lamellae can
be parallel or perpendicular to the pore surfaces. Concentric rings of A and B/C lamellae are formed in the
parallel case. The B/C layers further form B/C domains. The number of B/C domains is controlled by the
pore size. In the perpendicular case, the B/C layers are arranged alternatively along the pore axis. The stability
of these observed structures is analyzed.

I. Introduction

The self-assembly of block copolymers in confined space has
attracted tremendous attention in recent years. Introducing
geometric confinement is viewed as an alternative method of
fabricating novel nanoscale ordered structures, as compared with
changing the chemical components, or interactions between
immiscible species, or architectures of block copolymers. The
simplest case of symmetric confinement is in the form of thin
films, or one-dimensional confinement. It has been demonstrated
that the thickness and surface interaction provide an effective
method to control the orientation of the self-assembled structures
in the one-dimensional case.1-4 In recent years, higher-di-
mensional geometric confinements have received intensive
interest because they add richer physics into block copolymer
systems.5-7 A typical two-dimensional (2D) confinement is in
a cylindrical nanopore, and a three-dimensional (3D) confine-
ment is in a spherical cavity.8-11

In the past several years, many authors have studied the self-
assembly of block copolymers confined in a cylindrical pore in
experiments and in theories.12-25 In experiments done by
Russell’s group,14 a polystyrene-b-polybutadiene (PS-b-PBD)
diblock copolymer melt was loaded into cylindrical alumina
nanopores. It was observed to self-assemble into many novel
structures after annealing. For a nearly symmetric diblock copoly-
mer, these structures include concentric lamellae with different
numbers of layers, depending on the pore size. For an asymmetric
diblock copolymer (cylinder formation in the bulk), these structures
include straight cylinders along the pore axis in large pores and
helices in narrow pores. A similar system has also been modeled
and studied intensively by Monte Carlo (MC) simulations,17,21-23,26

dynamical density functional (DDF) simulations,18,25 and self-
consistent mean-field theory (SCMFT).19,20,26 The early work
started from the simple case of symmetric diblock copolymers
in a nanopore, by He et al.17 and Sevink et al.18 These authors
observed concentric lamellae for preferential surface field and
perpendicular lamellae for neutral pores. Motivated by the
experiments, Li and Wickham first systematically studied the

cylindrically confined diblock copolymer system by using the
real-space method of SCMFT in two-dimensional space,19

resulting in more than 20 2D equilibrium structures. In a
subsequent work,20 Li and Wickham extended the SCMFT
calculations to 3D space. They found a few interesting novel
3D structures including stacked disks, single helix, double
helices, toroids, and so on. These 3D structures follow a
universal transit sequence as the pore size is varied. Those results
are consistent with those of MC simulations done by Yu et al.21

Recent work done by Sevink and Zvelindovsky suggests that a
lot of exotic 3D structures, such as helical structures and
perforated lamellae, can also be formed in nearly symmetric
diblock copolymers confined in pores.25 By adjusting the length
of the pores, they find that most of these exotic structures are
metastable.

Diblock copolymers are the simplest type of block copoly-
mers. It is natural to expect that richer phase behavior will be
found in a more complex type of block copolymers. Indeed,
when the number of distinct blocks is increased from two, the
complexity and variety of self-assembled structures are signifi-
cantly increased.27,28 In particular, it has been shown experi-
mentally and theoretically that a simple extension of AB diblock
copolymers to ABC triblock copolymers leads to a very large
number of new morphologies.27,29,30 For ABC triblock copoly-
mer, there are two possible topological architectures: linear and
star. The self-assembly behavior of these triblock copolymers
is very different.29-32 It is expected that confined self-assembly
of ABC triblock copolymers will lead to new phenomena. For
linear ABC triblock copolymers, a few groups have investigated
their self-assembly in nanopores. For cylindrical confinement,
Li’s group has studied ABA triblock copolymers33 and Liang’s
group35 and Feng et al.34 have investigated ABC linear triblock
copolymers. On the other hand, studies on ABC star triblock
copolymer under cylindrical confinement are lacking.

Before studying the structures of ABC triblock copolymers
under confinement, it is necessary to understand their phase
behavior in the bulk. Gemma et al. have proposed that ABC
star copolymers self-assemble into cylindrical phases of tiling
patterns when the three components are immiscible and the three* Corresponding author. E-mail: weihuali@fudan.edu.cn.
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arms are long enough to give stable three-phase structures.36

They found that a few two-dimensional structures of tiling
patterns exist for a series of polymers of the type A1.0B1.0Cx,
with x ranging from about 0.4 to 2.5. These morphologies were
observed by Matsushita’s group in subsequent experiments.28

Theoretically, Tang et al. have examined the self-assembly of
ABC star copolymer melts in bulk by means of SCMFT
calculations in 2D space, and observed similar structures.32 One
of those interesting structures is the hierarchical lamella which
is composed of an A layer and B/C layer, in which the B and
C blocks further separate to form B/C domains. Two periods
are required to characterize the structure: one is for the distance
between two neighbor A layers, and another is for the B/C
domain repeating size. When a cylindrical confinement is
imposed on this ABC star triblock copolymer, its self-assembly
becomes more complicated than in the bulk. Therefore, confined
self-assembly of ABC triblock copolymers presents a very
interesting case, in which the hierarchical structure is competing
with the confinement effects. The present work focuses on the
study of this cylindrically confined ABC star triblock copolymer,
which forms hierarchical lamellar structure in bulk. Equilibrium
microstructures are explored for various pore diameters, and
their stability regions as a function of the pore diameter are
identified by comparing their free energy. In order to calculate
the free energy accurately, we employ the self-consistent mean-
field theory in our study. In our study, solutions of SCMFT
equations corresponding to different structures are obtained, and
then, the free energy density of candidate structures is used to
construct their phase diagram.

II. Theory

We consider an incompressible melt of ABC star triblock
copolymers, confined in a cylindrical pore of diameter D. Each
copolymer has a degree of polymerization N, and the chain
lengths of A, B, and C blocks are fAN, fBN, and fCN (fA + fB +
fC ) 1), respectively. Spacial lengths in our calculations are
expressed in units of the radius of gyration, Rg, of the polymer.
Within the mean-field approximation to the many-chain Edwards
theory,37-40 at a temperature T, the free energy F for n Gaussian
diblock copolymer chains confined in a cylindrical pore has the
form

where φA, φB, and φC are the monomer densities. The partition
function Q is for a single polymer interacting with the mean
fields ωA, ωB, and ωC produced by the surrounding chains. The
interactions among the three dissimilar monomers are character-
ized by three Flory-Huggins interaction parameters, �AB, �AC,
and �BC. In the confined melts, the spatial integration is restricted
to the pore volume, taken to be V. The preference of the pore
wall is introduced by including a surface field H(r) in eq 1.
Similar to our previous work,19,20 this surface field is chosen to
have the form

for R - σ e |r| e R, while H(r) ) 0 for |r| < R - σ. In this
work, we chose the cutoff distance for the surface interaction

to be σ ) 0.5Rg, and the decay length to be λ ) 0.25Rg. V0 )
0 means that the pore wall has no preference to any block. The
pore wall prefers B and C for V0 > 0 and prefers A for V0 < 0.

Minimization of the free energy with respect to the monomer
densities and the mean fields leads to the following standard
mean-field equations38

In the above equations, qK(r, s) and qK
† (r, s) (K ) A, B, C)

are end-segment distribution functions. The distribution function
qK(r, s) is proportional to the probability that a polymer chain
segment, of contour length s and with one free end, has its other
end located at r. These distribution functions satisfy the modified
diffusion equations

The initial conditions are qK(r, 0) ) qL
†(r, 0)qM

† (r, 0), where
(KLM) ∈ {(ABC), (BCA), (CAB)}, and qK

† (r, fK) ) 1. For
numerical solution, we employ the split-step Fourier method
of Tzeremes et al.41,42 to solve the modified diffusion equations
for the end-segment distribution functions. Similar to our
previous work,19,20 the cross section of the pore is put in a
rectangular cell which is a little larger than the diameter of the
pore. In the split-step Fourier method, periodic boundary
conditions are imposed automatically on the square cell. In our
calculations, we discretize the cell into Nx × Ny ) 128 × 128
lattices, and the contour length is divided into 64 segments for
each block. For three-dimensional calculations, Nz ) 64 points
are used for the third dimension.

In this system, there are seven parameters, �AB, �AC, �BC, fA,
fB, D, and V0, controlling the phase behavior. In this work, we
restrict ourselves to a few typical parameter groups. For a given
set of parameters, we first use random initial conditions for the
mean fields in our iterative algorithm to generate a set of
solutions to the mean-field equations. Once we determine a set
of solutions to the mean-field equations, we then use these
solutions as initial conditions in our algorithm to obtain their
free energy which is used to identify their stability of the
structures.

III. Results and Discussion

As our investigation focuses on a star triblock copolymer
which forms a hierarchical lamellar phase in the bulk, we chose

F
nkBT

) -ln Q + 1
V ∫|r|eR

dr{�ABNφA(r)φB(r) +

�ACNφA(r)φC(r) + �BCNφB(r)φC(r) - ωA(r)φA(r) -
ωB(r)φB(r) - ωC(r)φC(r) + H(r)[φA(r) - φB(r) - φC(r)]} (1)

H(r)
�N

) V0{exp[(σ + |r| - R)/λ] - 1} (2)

ωA(r) ) �ABNφB(r) + �ACNφC(r) + H(r) + η(r)
ωB(r) ) �ABNφA(r) + �BCNφC(r) - H(r) + η(r)
ωC(r) ) �ACNφA(r) + �BCNφB(r) - H(r) + η(r)

φA(r) ) 1
Q ∫0

fA ds qA(r, s)qA
† (r, s)

φB(r) ) 1
Q ∫0

fB ds qB(r, s)qB
† (r, s)

φC(r) ) 1
Q ∫0

fC ds qC(r, s)qC
† (r, s)

Q ) 1
V ∫ dr qK(r, s)qK

† (r, s) (3)

φA(r) + φB(r) + φC(r) ) 1 (4)

∂qK(r, s)

∂s
) ∇2qK(r, s) - ωK(r, s)qK(r, s) (5)

-
∂qK

† (r, s)

∂s
) ∇2qK

† (r, s) - ωK(r, s)qK
† (r, s) (6)
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its volume fractions as fA ) 0.6 and fB ) fC ) 0.2, and with
fixed repulsive interactions �ABN ) �ACN ) �BCN ) 60. The
strength parameter of the surface field is chosen as V0 ) -0.20
to give strong attraction to the A block and strong repulsion to
the B and C blocks. Figure 1 shows the monomer density plots
formed by the copolymer melt in bulk obtained by real-space
SCMFT calculations. The three colors of blue, green, and red
represent the regions where the greatest component is A, B,
and C, respectively. Obviously, the bulk microphase is a typical
hierarchical lamellar phase which consists of A-domain lamellae
and alternating-B/C-domain-formed lamellae (denoted as
LAM+BD by Tang et al.32). Here, two lengths are used to
characterize its periodicity. One, indicated by L1 in Figure 1a,
is used to measure the period of alternating B/C domains, and
the other one shown as L2 is used to measure the distance
between two neighboring A-domain layers. For the chosen set
of parameters, the two periods are determined as L1 ) 2.532Rg

and L2 ) 4.260Rg (Rg is the radius of gyration of the copolymer)
by SCMFT calculations. In our real-space SCMFT calculations,
as random initial fields are used to start the iteration of the
SCMFT equations, more than one solution can be obtained.
Figure 1b shows another possible equilibrium morphology
different from that in Figure 1a. In Figure 1a, two neighboring
B/C-domain-formed lamellae have a half-period shift of L1/2,
and in Figure 1b, there is no shift. It is intuitively thought that
the morphology of Figure 1a has lower free energy than that of
Figure 1b. By calculating the free energy difference of a
morphology with varied shifts between zero and L1/2, we find
that the free energy difference, as a function of the shift, depends
on the Flory-Huggin interactions and the volume fractions.
Generally, when the interactions �ABN ) �ACN < �BCN, the free
energy difference decreases as the shift increasing. This means
that the morphology of Figure 1a has the lowest free energy as
expected. The magnitude of the free energy difference becomes
larger when �ABN ) �ACN decreases for a fixed �BCN. This is
caused by the increased width of the interface between A and
B/C domains and the decreased distance between two neighbor-
ing interfaces. Oppositely, the free energy difference becomes
smaller. This suggests that the free energy tends to be
independent of the shifting when the interactions of �ABN )
�ACN become large enough. In consequence, the system can
have an infinite number of degenerate states, as any pair of
neighboring B/C layers can have any shift. For the choice of
�ABN ) �ACN ) �BCN ) 60, the free energy difference between
the two morphologies in Figure 1 is very tiny (much smaller

than 10-4). As the present work focuses on the confined system
where the arrangement of domains is very different from that
in the bulk, we do not discuss it much here. More details about
the free energy of the bulk phase will be presented in our future
work.

For the star triblock copolymers confined in cylindrical
nanopores, many equilibrium solutions of the SCMFT equations
for the fixed set of parameters are obtained by the application
of varied random initial fields. The stability of each structure is
examined by comparing its free energy with other candidate
structures. As the bulk phase of this triblock copolymer is a
hierarchical lamellar phase, there is a tendency for it to self-
assemble into hierarchical concentric lamellar structures under
the confinement of a nanopore with preferential interactions to
one block similar to the self-assembly in cylindrically confined
diblock copolymers (CCDBCP). For the investigation of this
kind of structure, we can perform our SCMFT calculations in
two-dimensional space. A typical free energy comparison among
a few structures is presented in Figure 2a. The monomer density
plots of these structures are shown in Figure 2b, and their
relative stability regions as a function of diameter D are plotted
in Figure 2c for fA ) 0.6 and fB ) fC ) 0.2. The diameter is
rescaled in units of the period L2 in bulk. Figure 2d shows the
density profiles of structures and corresponding stability regions
for larger pores. For convenience, structures shown in Figure
2b are denoted as Pn, where n indicates the repeating number
of BC domains except for the case of P2. The structures of Pn

(n ) 5 to n ) 9) with n-fold symmetry are typical hierarchical
concentric lamellar structures with a B/C-alternating-domains
co-formed concentric layer like their bulk counterpart. Their
repeating number of BC domains increases from 5 to 9 as the
diameter is increased. The number of BC domains is determined
by the average domain size on the ring. The average domain
sizes of structures Pn, which can be estimated by dividing the
circumference of the ring at the center of the BC domain along
the pore radius by the number of BC domains, are given in
Figure 3. L is rescaled with the bulk value of BC-domain size
L1 ) 2.532Rg. The dashed lines are used to indicate the
transitions between two neighbor phases. We can see that more
BC domains are added to relax the stretching energy when their
average size is much larger than the bulk value.

For the single-ring structures of Pn, the stretching energy and
interfacial energy have the best balance when the pore diameter
is just above twice of the natural period L2 in bulk as the effect
of the pore curvature.43 In Figure 2, the structures P7 and P8

satisfy this condition. As the pore size is decreased, the
interfacial area of A/B and A/C domains is increased as the
domains along the radial direction are compressed. For smaller
diameters than that of P5, the interfacial energy becomes very
high if the single-ring structure remains. P4 is not formed to
continue the structure sequence, and it is replaced by P3 which
consists of a hexagonal C domain at the center and three petals
of BC domains around when D/L2 < 1.62. In the structure P3,
the interfacial area between A and B/C domains is decreased
by breaking the B/C coformed ring. When the pore size is
decreased further, the compression of the domain sizes induces
the interfacial energy to become high again. As the number of
domains are enforced to be reduced, P2 is formed to replace
P3. For very narrow pores, i.e., D/L2 < 1.2, the structure of P1

only composed of concentric layers is formed. In those
mentioned structures, we should notice that B and C blocks are
symmetric, as they have the same volume fractions for our
choice of parameters. The two components in these structures
can be switched to form complementary equilibrium structures

Figure 1. Monomer density plots of the bulk phase formed in the
melts of ABC star triblock copolymer with �ABN ) �ACN ) �BCN )
60, fA ) 0.6, fB ) 0.2, and fC ) 0.2. The colors of blue, red, and green
indicate the regions where the greatest component is A, B, and C,
respectively. L1 is the period of alternating B/C domains, and L2 is the
distance between two neighboring A-domain layers. Parts a and b show
two cases of B/C sequences for two neighboring layers: B/C domains
are arranged with L1/2 shift in part a and with no shift in part b.
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with the same free energy. In the regions of narrow pores, it is
possible for BC domains to be arranged along the pore axis to
form three-dimensional structures. We will discuss this later.
The structure sequence Pn is not continued when the pore size
is larger than that of n ) 9, either. It is because the stretching
energy of A blocks becomes high in the single-ring structures
as the diameter is increased. Some domains appear at the center
of the pore to release the high stretching of A blocks. More
possible structures can be formed by two means of varying the

inner part, or adding of BC domains into the outer ring. In our
2D calculations, four structures are observed with different inner
parts when D is increased: three-layer, concentric lamellae, four-
layer, and P3. When the diameter is increased to be larger than
D/L2 > 3.7, the structures with double BC-domain rings appear.
The mechanism of varying the layers of the structures for varied
pore size is similar to that during the formations of concentric
lamellae of the CCDBCP system. In our previous work,43 we
studied the self-assembly behavior of near symmetric diblock
copolymers confined in cylindrical pores. Our results indicate
that the transitions among concentric lamellae are at the pore
size larger than the integer time of the bulk period because of
the effect of the interface curvature induced by the pore wall.
The single-ring structures exist until D/L2 > 2.72.

The above results are from the self-assembly of the ABC
star copolymer melts confined in pores with pore-wall preference
to the largest block. According to previous work,19-21,25 the
preference of the pore wall also has a significant influence on
the structure formation of the copolymers. Here, we still use
the compositions as (0.6, 0.2, 0.2), but we change the composi-
tion sequence as the block attracted by the pore wall to be fA )
0.2, and set the other two repulsed blocks as fB ) 0.2 and fC )
0.6. Figure 4 presents the observed structures and their stability
regions as a function of the pore diameter. The inner parts of
these structures are similar to the structures observed in the case
where the pore wall prefers the largest block. The reason for
the formation of the outer layers near the pore wall is similar

Figure 2. (a) Typical free energy curves of a few structures observed in the ABC star triblock copolymer melts, with fA ) 0.6 and fB ) fC ) 0.2,
under the confinement of cylindrical pores for varied diameters D, which is rescaled in units of the period L2. The pore wall attracts A and repulses
B and C. The monomer density profiles of these structures are shown in part b. The stability regions of these structures obtained by comparing their
free energy for narrower pores is plotted in part c, and that for larger pores is plotted in part d. Blue, green, and red represent A, B, and C domains,
respectively.

Figure 3. Width of two neighboring B and C domains at the domain
center along the pore radius as a function of the pore diameter D. The
width and pore diameter are rescaled by periods L1 and L2, respectively.
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to that in the CCDBCP system.19 The pore wall attracts small
block A to form a thin layer close to the wall, and small block
B is enforced to form a neighbor thin layer by their connection.
Inside of the two thin layers, the largest block C is arranged. In
the inner space, the structures are formed according to the way
in which the larger block C stays outside of the interface, and
the smaller blocks A and B stay inside of the interface. An
overbar is used to denote these single-ring structures as Pjn in
this case. Compared with the other case in Figure 2, the structure
sequence has a shift accounting for the narrower effective pore.
The shifts for different transitions have a small dependence on
the pore diameter, and are almost constant during the narrow
region. For example, the shifts are around 1.2L2 in the region
from P5 to P9.

Similar to the CCDBCP system, there is another possible way
for the copolymer to form microstructures. When considering
the pore wall with a strong preference to the largest block A, A
blocks are attracted to form a concentric layer near the wall.
Novel structures, different from the 2D structures, can be formed
by changing the arrangement of B/C domains, i.e., arranging B
and C domains alternatively along the pore axis. In order to
examine the formation of this kind of structure, we extend our
2D calculations to three-dimensional space. According to the
knowledge from the CCDBCP system, understanding self-
assembling behaviors in the narrow-pore region, where single-
layer structures are formed, is crucial to understanding the
confinement effect of larger pores. Therefore, we concentrate
our 3D calculations to the small-pore-size region. A few 3D
equilibrium structures, different from the 2D structures given

above, are observed in this region. These 3D structures (Figure
5) are stacked disks, stacked 3-fold lobes, stacked 4-fold lobes,
and stacked rings. These four structures are denoted as Dk, Lb3,
Lb4, and Rn, respectively. The 3D structures are periodic along
the pore axis. The work in the CCDBCP system tells us that
the free energy is a function of the pore length for these periodic
structures.20,25 Therefore, we minimize the free energy by
adjusting the pore length to zero the extensional forces.25 We
find that the periods of these structures, only with slight
dependence on the pore size (smaller than 0.5%), are close to
the bulk period of L1. This suggests that the size of repeating
B/C domains is hardly influenced by the confinement.

In the 2D structures, the junction points of the three arms
align in a straight line parallel to the pore axis to keep the
translational symmetry like their bulk behaviors. However, in
3D structures, the translational symmetry is broken when B and
C domains are arranged along the pore axis. From these

Figure 4. Phase diagrams of the structures formed by copolymers with fA ) fB ) 0.2 and fC ) 0.6 in nanopores with varying diameter. The pore
wall has attractive preference to the A component and repulsion to the B and C components.

Figure 5. Monomer density plots of four three-dimensional
structures. The isodensity surfaces of φk ) 0.5 (k ) A, B, and C)
are shown in blue, red, and green colors. From left to right, these
structures are stacked disks (denoted as Dk), stacked 3-fold lobes
(denoted as Lb3), stacked 4-fold lobes (denoted as Lb4), and stacked
rings (denoted as Rn).
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structures in Figure 5, we find that the junction points form a
curve in a plane perpendicular to the pore axis. The junction-
point-formed curve can be circles, 3-fold lobes, and 4-fold lobes.
In order to analyze their stability compared with 2D structures,
we calculate their minimal free energy at equilibrium, and
compare their free energy among themselves, also with those
of 2D structures in Figure 6. From the comparison of the free
energy, we can conclude that the 3D structures have lower free
energy than the corresponding 2D structures appearing in their
phase diagram in Figure 2. This suggests that the 3D structures
become stable structures instead of 2D structures. The difference
of the free energy between the 2D structures and the 3D
structures has a decreasing tendency as the pore diameter
increases. This is due to the effect of the curvature imposed on
the microstructures by the geometrical confinement. In the 2D
ring structures, B and C domains are packed in a similar way
as those in bulk except that their alignment is in a circle path
different from the straight path in bulk. When the pore size
becomes larger, the circle path with smaller curvature is closer
to the straight one. This predicts that it might be easier to observe
2D ring structures in experiments for larger pores when the wall
preference is present.

From the results of free energy, we can see that the stable
structure sequence is Dk, Lb3, and Rn as increasing pore size,
and the structure Lb4 is a metastable structure. In these 3D
structures, packing B/C repeating domains along the pore axis
allows the BC-domain size to be adjusted freely. For the
arrangement of B/C domains, it is similar as the perpendicular
lamellae in the CCDBCP system. However, the junction among
A/B/C blocks induces restriction on the B/C domain size along
the radial direction. For very narrow pores, stacked disks are
the preferred stable structure. Without considering the separation
between B and C, the structure is similar to the single-cylinder
structure in the CCDBCP system. When the pore diameter
becomes larger than the bulk period of L2, i.e., D > 1.2L2, an
energy penalty is resulted by the stretching of B/C blocks from
the junction-point circle to the center of B/C domains. One way
to relax the stretching energy is to form a fluctuated junction-
point circle (or A/B/C three-phase interface) with a cost of
increasing interfacial energy, such as the curves with 3-fold or
4-fold lobes. The concave parts of the interfaces can reduce
the stretching of B/C blocks to the domain center. Therefore,
the formation of the 3D structures is also frustrated. The

structure with 3-fold lobes reaches the best balance compared
with stacked disks and the structure with 4-fold lobes for the
region of 1.20L2 < D < 1.56L2. In our calculations, we do not
find a first-order transition between the structures Dk and Lb3.
It seems that the formation of three lobes from the disks should
be a continuous process as the pore size is increasing. When
the pore size is increased further, single-ring structures become
stable for B/C domains. The stacked ring structure appears at a
similar region (D ≈ 1.56L2) as that (D ≈ 1.61L2) where the
first single-ring 2D structure of P5 appears with the relatively
low free energy among all 2D structures.

IV. Conclusions

In summary, we have studied the formation of microstructures
in a cylindrically confined star triblock copolymer melt, which
forms a hierarchical lamellar structure in bulk, by using real-
space SCMFT. We have examined the formation of two possible
kinds of microstructures in cylindrically confined ABC star
triblock copolymers. One kind of structures are hierarchical
concentric lamellae and some intermediate structures. These
structures are 2D, and they have translational symmetry along
the pore axis. Another kind of structures are formed by arranging
B/C domains alternatively along the pore size when keeping A
domains as a contacting layer on the wall because of the strong
preference of the wall. For the small-pore-size region (D/L2 <
2.4), a few interesting structures, including stacked disks (Dk),
stacked 3-fold lobes (Lb3), stacked 4-fold lobes (Lb4), and
stacked rings (Rn), are observed. It is interesting that the three-
arm junction points form a curve in these 3D structures instead
of a straight line in 2D structures or in the bulk system. By
analyzing their free energy, we find that 3D structures Dk, Lb3,
and Rn become stable in the phase diagram instead of 2D
structures. The 3D structure with 4-fold lobes is metastable. In
addition, the transition between Dk and Lb3 seems to be a
continuous transition.

The star triblock copolymers have complex self-assembling
behaviors in bulk, so their self-assemblies under cylindrical
confinement become more complicated. Our work with reduced
parameters can hopefully give some understanding to this
system, and can guide some experiments on this subject. Though
all 2D structures observed in SCMFT calculations are meta-
stable, they can be observed in experiments. Particularly, there
is a bigger possibility to observe 2D structures in relatively larger
pores by experiments because our results suggest that the
difference of the free energy between 2D structures and 3D
structures decreases as the pore size increases. Experiments are
also expected to prove our prediction of a kind of 3D structures.

Acknowledgment. The authors would like to thank the High-
end Computing Centre at Fudan University for computing
resourses. This work was supported by the National Natural
Science Foundation of China (Grant 20704010). W.L. gratefully
acknowledges support from the Shanghai Pujiang Program
(Program No. 08PJ1402000) and the Shanghai Educational
Development Foundation.

References and Notes

(1) Matsen, M. W. J. Chem. Phys. 1997, 106, 771.
(2) Xu, T.; Hawker, C. J.; Russell, T. P. Macromolecules 2005, 38,

2802.
(3) Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Polymer 2006,

47, 2205.
(4) Sakurai, S.; Bando, H.; Yoshida, H.; Fukuoda, R.; Mouri, M.;

Yamamoto, K.; Okamoto, S. Macromolecules 2009, 42, 2115.
(5) Darling, S. B. Prog. Polym. Sci. 2007, 32, 1152.

Figure 6. Comparisons of the free energy between two-dimensional
structures and three-dimensional structures. The hollow symbols are
the free energy of 2D structures Pk (k ) 1, 2, ..., 8), and the filled
symbols are the free energy of 3D structures: stacked disks, stacked
3-fold lobes, stacked 4-fold lobes, and stacked rings. The dotted line
is the extrapolation of the free energy curve of Lb3 toward that of
stacked disks.

11158 J. Phys. Chem. B, Vol. 113, No. 32, 2009 Xu et al.



(6) Yu, B.; Li, B. H.; Jin, Q. H.; Ding, D. T.; Shi, A. C. Macromolecules
2007, 40, 9133.

(7) Pinna, M.; Guo, X. H.; Zvelindovsky, A. V. Polymer 2008, 49,
2797.

(8) Yu, B.; Li, B. H.; Jin, Q. H.; Ding, D.; Shi, A. C. Macromolecules
2007, 40, 9133.

(9) Jeon, S. J.; Yi, G. R.; Koo, C. M.; Yang, S. M. Macromolecules
2007, 40, 8430.

(10) Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura,
M. Angew. Chem., Int. Ed. 2008, 47, 8044.

(11) Higuchi, T.; Tajima, A. K.; Yabu, H.; Shimomura, M. Soft Matter
2008, 4, 1302.

(12) Wu, Y.; Cehng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.;
Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Nat. Mater. 2004, 3,
816.

(13) Shin, K.; Xiang, H.; Moon, S. I.; Kim, T.; McCarthy, T. J.; Russell,
T. P. Science 2004, 306, 76.

(14) Xiang, H.-Q.; Shin, K.; Kim, T.; Moon, S. I.; McCarthy, T. J.;
Russell, T. P. Macromolecules 2004, 37, 5660.

(15) Xiang, H.; Shin, K.; Kim, T.; Moon, S.; McCarthy, T. J.; Russell,
T. P. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 3377.

(16) Sun, Y.; Steinhart, M.; Zschech, D.; Adhikari, R.; Michler, H.;
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